Elliptic Function Compactons in a class of Generalized Korteweg-DeVries Equations

Fred Cooper∗

National Science Foundation, Division of Physics, Arlington, VA 22230
Santa Fe Institute, Santa Fe, NM 87501 and
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Avinash Khare†

Institute of Physics, Bhubaneswar, Orissa 751005 India

Avadh Saxena‡

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

(Dated: April 23, 2005)

Abstract

We study the class of generalized Korteweg-DeVries equations derivable from the Lagrangian:

\[L(l, p) = \int \left(\frac{1}{2} \varphi_x \varphi_t - \frac{(\varphi_x)^l}{l!(l-1)} + \alpha(\varphi_x)^p(\varphi_{xx})^2 \right) dx, \]

where the usual fields \(u(x, t) \) of the generalized KdV equation are defined by \(u(x, t) = \varphi_x(x, t) \). This class contains compactons, which are solitary waves with compact support. In this paper we obtain the elliptic function compact solitary wave solutions to this class of equations. We prove a theorem that all the solitary wave solutions of the equations of motion obey a simple relationship between the Energy, Momentum and velocity of the solitary wave.

∗Electronic address: fcooper@nsf.gov
†Electronic address: khare@iopb.res.in
‡Electronic address: avadh@lanl.gov